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Abstract

We study central configuration of a set of symmetric planar five-body problems

where in the first case, four of the masses effectively form a rhombus, with the

fifth mass placed anywhere on the axis of symmetry. We construct expressions for

mass ratios and identify regions in the phase space where it is possible to choose

positive masses which will make the central configuration and in the second case

five masses will form a triangle, with one of the masses moved up on the axis of

symmetry. As a particular case, we also discuss a four-body configuration with a

zero central mass.
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Chapter 1

Introduction

In mechanics, the n-body problem is the problem which predicts the individual

motion of a group of celestial bodies interacting with each other gravitationally.

Motivation behind the solution of these kind of problems is to learn about the

motions of the Moon, Sun, planets etc. Mathematicians and astronomers are

attracted towards n-body problems in 17th century. The statement of the problem

is “What would be the orbit, if we are given n celestial objects interacting with each

others under the gravitational forces.” Newton solved two body-problem (2BP) by

his universal law of gravitational. The problem has no significant solution if n ≥ 3,

although it may gives us a particular solutions if we have a restricted n-body

problem. In the last four centuries, mathematicians and astronomers continued

work on the n-body problems. First of all, Kepler, in 17th century, defining

the elliptical trajectories of the planets around the sun in his laws of planetary

motion. Philosophiae Naturalis Principia Mathematica [1], one of the

most important works in the history of science, in which Newton derived and

formulated Kepler’s law. As a special case, the law for two particles when they

are interacting with each others by gravitational force is:

F = G
m1m2

r2
r, (1.1)

1
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where the two masses m1 and m2 are apart from each others by r and G, is the

universal gravitational constant. After the justification of Kepler’s laws, Newton

turned his attention to comparatively more complex systems. Although, after

a lot of struggle, he was unable throughout his life to get any breakthrough in

three-body problems (3BPs). After twenty years the death of Newton, Alexis

Clairaut succeeded in presenting an approximation for the 3BP. After some small

adjustment, his work accounted for the perigee of the moon, which was the aim

of Newton. He won the St. Petersburg Academy prize in 1752. When Halley’s

comet passed by earth in 1759, the value of his approximations was amply to

demonstrate its motion. He himself take off the margin of error which he predicted

in his equations, within a month.

Leonhard Euler also work on the 3BP at the same time. The extremely influential

work of Henri Poincaré on 3BP has end the classical period of work. King Oscar

II of Sweden, in the late 19th century setup an award for solving the n-body

problem (a more general form of the problem with n rather than 3 masses) on the

recommendation of Karl Weierstrass, Gsta Mittag-Leffler, and Charles Hermite.

The statement was as follow: [2]

“Given a system of arbitrarily many point masses that attract each other according

to Newtons law, under the assumption that no two points ever collide, try to find

a representation of the coordinates of each point as a series in a variable that

is some known function of time and for all of whose values the series converges

uniformly”.

Many eminent mathematicians and astronomers like Carl Gustav Jacob Jacobi,

Lagrange and Euler working on it in the 19th century. Until 1991, the general

solution to the problem was remained unsolved, when a Professor in the University

of Arizona, Qiudong Wang published “The global solution of n-body Problem” [3].

However his work meets the requirements of King Oscars problem, Wang himself

would characterize his result as a tricky, simple and useless answer while praising

the publications the Poincaré did complete [4].
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1.1 Central Configurations

A central configuration (CC) is a special arrangement of point masses interact-

ing by Newton’s law of gravitation with the following property “the gravitational

acceleration vector produced on each mass by all others should point toward the

center of mass and proportional to the distance to the center of mass”. CCs play

an important role in the study of the Newtonian n-body problem. For example,

they lead to the only explicit solutions of the equations of motion, they govern

the behavior of solutions near collisions, and they influence the topology of the

integral manifolds.

As it is known that roughly 67% of our galaxy’s stars are included in multi-

stellar systems, that’s why understanding the four-body problem (4BP) and five-

body problem (5BP) is very valuable. CC is valuable for understanding the grav-

itational n-body problems [5–7]. They can also be helpful in finding solutions

(explicit homographic) of the equations of motion and periodic solutions [8]. CCs

are also helpful in understanding that type of solutions which is near the collisions

and the energy level sets that holds the CC to find the topology of the integral

manifolds. In [9] Simmons and Bakker gave analysis (linear stability) of a rhom-

boidal 4BP and show that collisions (isolated binary) can be regularized at origin.

For regularization of binary collisions, Pérez-Chavela and Lacomba [10] had ear-

lier analyzed the same kind of problem. They study it’s escape and capture orbits

in [11]. For equal masses, Yan [12] studied the existence and linear stability of

periodic orbits of the same model. For rhomboidal 4BP, to find the regions of

stability Ji, Liao, and Liu [13] uses the Poincaré section. [14–16] are some other

work related to rhomboidal 4BP.

Most of the periodic orbits in a rhomboidal 5BP when 2 pairs of masses are put

on the edges of a rhombus and fifth stationary object is put at the center which

is also the center of mass of the system, calculated by Corbera and Llibre [17].

Shoaib et al. in [18] obtained CC regions for the same problem. Different features
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of the restricted rhomboidal 5BP which has 4 positive objects on the edges of a

rhombus and 5th infinitesimal object is placed in the plane of the 4 objects are

studied by Marchesin and Vidal [19] and Kulesza et al. [20].

1.2 Thesis Contribution

We assume symmetric 5BP, where on the axis of symmetry, there are three different

collinear masses. The other 2 masses are placed symmetrically on each side as

shown in Figure 3.2. CCs regions are derived for 4BP and 5BP. The possible CCs

regions are first obtained analytically and explored numerically as well.

1.3 Dissertation Outlines

This dissertation is divided into four chapters.

In Chapter 1 the introduction of the problem and aim of this research is shortly

discussed.

In Chapter 2, we revisit the basic definitions related to celestial mechanics, New-

ton’s laws of motion and Kepler’s laws of planetary motion. In the next portion

of this chapter, we discuss the 2BP and n-body problem briefly.

In Chapter 3, the paper [21] is reviewed comprehensively.

In chapter 4, we conclude the thesis.



Chapter 2

Preliminaries

In this chapter, we need to recall the basic definitions, concepts, terminologies and

laws from existing literature [22, 23], related to our research work.

2.1 Basic Definitions

Definition 2.1.1.(Motion)

“Motion is the action used to change the location or position of an object with

respect to the surroundings over time.”

Definition 2.1.2. (Mechanics)

“Mechanics is a branch of physics concerned with motion or change in position of

physical objects. It is sometimes further subdivided into:

1. Kinematics, which is concerned with the geometry of the motion,

2. Dynamics, which is concerned with the physical causes of the motion,

3. Statics, which is concerned with conditions under which no motion is appar-

ent.”

Definition 2.1.3. (Scalar)

“Various quantities of physics, such as length, mass and time, requires for their

5
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specification a single real number (apart from units of measurement which are de-

cided upon in advance). Such quantities are called Scalars and the real number

is called the magnitude of the quantity.”

Definition 2.1.4. (Vector)

“Other quantities of physics, such as displacement, velocity, momentum, force etc

require for their specification a direction as well as magnitude. Such quantities

are called Vectors.”

Definition 2.1.5. (Field)

“A field is a physical quantity associated with every point of spacetime. The phys-

ical quantity may be either in vector form, scalar form or tensor form.”

Definition 2.1.6. (Scalar field)

“If at every point in a region, a scalar function has a defined value, the region is

called a scalar field. i.e.,

f : R3 → R,

e.g. temperature and pressure fields around the earth.”

Definition 2.1.7. (Vector field)

“If at every point in a region, a vector function has a defined value, the region is

called a vector field.

V : R3 → R3,

e.g. tangent vector around a smooth curve.”

Definition 2.1.8. (Conservative vector field)

“A vector field V is conservative if and only if there exists a continuously differ-

entiable scalar field f such that V = −∇f or equivalently if and only if
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∇×V = CurlV = 0.”

Definition 2.1.9. (Tensor field)

“If at every point in a region, a tensor function has a defined value, the region

is called a tensor field. e.g. Riemann curvature tensor, stress-energy-momentum

tensor, electromagnetic tensor.”

Definition 2.1.10. (Uniform force field)

“A force field which has constant magnitude and direction is called a uniform or

constant force field. If the direction of the field is taken as negative z direction

and magnitude is constant F0 > 0, then the force field is given by

F = −F0k̂.”

Definition 2.1.11. (Central force)

“Suppose that a force acting on a particle of mass m such that

(a) it is always directed from m toward or away from a fixed point O,

(b) its magnitude depends only on the distance r from O.

then we call the force a central force or central force field with O as the center of

force. In symbols F is a central force if and only if

F = f(r)r1 = f(r)r
r
,

where r1 = r
r

is a unit vector in the direction of r. The central force is one of

attraction towards O or repulsion from O according as f(r) < 0 or f(r) > 0 respec-

tively.”

Definition 2.1.12. (Degree of freedom)

“The number of coordinates required to specify the position of a system of one or

more particles is called number of degree of freedom of the system.

Example: A particle moving freely in space requires 3 coordinates, e.g. (x, y, z),

to specify its position. Thus the number of degree of freedom is 3.”
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Definition 2.1.13. (Center of mass)

“Let r1, r2, ..., rn be the position vector of a system of n particles of masses

m1,m2, ...mn respectively. The center of mass or centroid of the system of particles

is defined as that point having position vector

r̂ =
m1r1 +m2r2 + ...+mnrn

m1 +m2 + ...+mn

=
1

M

n∑
ν=1

mνrν ,

where

M =
n∑
ν=1

mν ,

is the total mass of the system.”

Definition 2.1.14. (Center of gravity)

“If a system of particles is in a uniform gravitational field, the center of mass is

sometimes called the center of gravity.”

Definition 2.1.15. (Torque)

“If a particle with a position vector r moves in a force field F, we define τ as

torque or moment of the force as

τ = r× F.

The magnitude of τ is

τ = rF sin θ.

The magnitude of torque is a measure of the turning effect produced on the particle

by the force.”

Definition 2.1.16. (Momentum)

“The linear momentum p of an object with mass m and velocity v is defined as:

p = mv.
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Under certain circumstances the linear momentum of a system is conserved. The

linear momentum of a particle is related to the net force acting on that object:

F = ma = m
dv

dt
=

d

dt
(mv) =

dp

dt
.

The rate of change of linear momentum of a particle is equal to the net force

acting on the object, and is pointed in the direction of the force. If the net force

acting on an object is zero, its linear momentum is constant (conservation of linear

momentum). The total linear momentum p of a system of particles is defined as

the vector sum of the individual linear momentum.

p =
n∑
1

pi.”

Definition 2.1.17. (Point-like particle)

“A point-like particle is an idealization of particles mostly used in different fields of

physics. Its defining features is the lacks of spatial extension:being zero-dimensional,

it does not take up space. A point-like particle is an appropriate representation

of an object whose structure, size and shape is irrelevant in a given context. e.g.,

from far away, a finite-size mass (object) will look like a point-like particle.”

Definition 2.1.18. (Angular momentum)

“Angular momentum for a point-like particle of mass m with linear momentum p

about a point O, defined by the equation

L = r× p,

where r is the vector from the point O to the particle. The torque about the point

O acting on the particle is equal to the rate of change of the angular momentum

about the point O of the particle i.e.,

τ =
dL

dt
.”

Definition 2.1.19. (Holonomic and non-holonomic constraints)
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“The limitations on the motion are often called constraints. If the constraint

condition can be expressed as an equation

φ(r1, r2, ...rn, t) = 0

connecting the position vector of the particles and the time, then the constraints

are called holonomic.

If it cannot be so expressed it is called non-holonomic.”

Definition 2.1.20. (Inertial frame of reference)

“A frame of reference that remains at rest or moves with constant velocity with

respect to other frames of reference is called inertial frame of reference. Actually,

an unaccelerated frame of reference is an inertial frame of reference. In this frame

of reference a body does not acted upon by external forces. Newton’s laws of

motion are valid in all inertial frames of reference. All inertial frames of reference

are equivalent.”

2.2 Kepler’s Laws of Planetary Motion

“Kepler’s three laws of planetary motion can be described as follows:

1. All planets are moving in an elliptical path with sun at one focus.

2. The radius vector drawn from the sun to a planet sweeps out equal areas in

equal time intervals.

3. The cube of the semi major axis of the planetary orbits are proportional

to the square of the planets periods of revolution. Mathematically, Kepler’s

third law can be written as:

T 2 =

(
4π2

GMs

)
r3,

where T is the time period, r is the semi major axis, Ms is the mass of sun
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and G is the universal gravitational constant.”

2.3 Newton’s Laws of Motion

“The following three laws of motion given by Newton are considered the axioms

of mechanics:

1. First law of motion

Every particle persists in a state of rest or of uniform motion in a straight

line unless acted upon by a force.

2. Second law of motion

If F is the external force acting on a particle of mass m which as a reaction

is moving with velocity v, then

F =
d

dt
(mv) =

dP

dt
.

If m is independent of time this becomes

F = m
dv

dt
= ma,

where a is the acceleration of the particle.

3. Third law of motion

For every action, there is an equal and opposite reaction.”

2.3.1 Newton’s Universal Law of Gravitation

“Every particle of matter in the universe attracts every other particle of matter

with a force which is directly proportional to the product of the masses and in-

versely proportional to the square of the distance between them. Hence, for any
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two particles separated by a distance r, the magnitude of the gravitational force

F is:

F = G
m1m2

r2
r

where G is universal gravitational constant. Its numerical value in SI units is

6.67408× 10−11m3kg−1s−2.”

2.4 Two Body Problem

“The two-body problem , first studied and solved by Newton, states: Suppose

that the positions and velocities of two massive bodies moving under their mutual

gravitational force are given at any time t, then what should their position and ve-

locities be for any other time t, if the masses are known? Example include a planet

orbiting around a star (Earth-Sun, Moon-Earth), two stars orbiting around each

other, satellite orbiting around orbit. The two-body problem is very important

because of the following facts:

1. It is the only gravitational problem in celestial mechanics, apart from rather

restricted solutions of three body problem, for which we have a complete

and general solution.

2. A wide range of practical orbital motion problems can be treated as approx-

imate two-body problems.

3. The two-body solution may be used to provide approximate orbital param-

eters and predictions or serve as a starting point for the generation of ana-

lytical solutions valid to higher orders of accuracy.”

2.4.1 The Solution to the Two-Body Problem

“The governing law for the two-body is Newton’s universal gravitational law:

F = G
m1m2

r3
r, (2.1)
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for two masses m1 and m2 separated by a distance of r, and G the universal

gravitational constant. The aim here is to determine the path of the particles for

any time t, if the initial positions and velocities are known. In Figure 2.1, the

force of attraction F1 is directed along r towards m, while the force F2 on M is

in opposite direction. By Newton’s third law,

F1 = −F2. (2.2)

From Figure 2.1,

F1 = G
mM

r3
r. (2.3)

Using Newton’s second law of motion and by equation (2.1) and (2.2), the equation

of motion of the particles under their mutual gravitational attractions are given

by

mr̈1 = m
d2r1
dt2

= G
mM

r3
r, (2.4)

Figure 2.1: Center of mass of two body system

M r̈2 = M
d2r2
dt2

= −GmM
r3

r, (2.5)

where r1 and r2 be the position vectors from the reference O as shown in

Figure 2.1. Adding equation (2.4) and (2.5), we get:

mr̈1 +M r̈2 = 0, (2.6)
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integrating above equations yields:

mṙ1 +M ṙ2 = c1, (2.7)

that the total linear momentum of the system i.e. mvm+MvM = c1 is a constant.

Again integrating equation (2.7) implies:

mr1 +Mr2 = c1t+ c2, (2.8)

where c1 and c2 are constant vectors.

Using the definition of center of mass in 2BP, R is defined as:

(m+M)R = mr1 +Mr2,

MtR = mr1 +Mr2, (2.9)

where Mt = m + M. Taking the derivative of equation (2.9) and comparing with

equation (2.21), we get

MtṘ = c1 ⇒ Ṙ =
c1

Mt

= constant

show that Ṙ = vc (velocity of center of mass) is constant.

Subtracting the equations (2.4) and (2.5) gives:

r̈1 − r̈2 =
GM

r3
r +

Gm

r3
r, (2.10)

r̈1 − r̈2 = G(m+M)
r

r3

⇒ r̈ = µ
r

r3

⇒ r̈ + µ
r

r3
= 0, (2.11)
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where µ = G(m+M) is defined as reduced mass and r1− r2 = −r, see Figure 2.1.

Taking the cross product of r with equation (2.11) we obtain:

r× µr̈ +
µ2

r3
r× r = 0

⇒ r× r̈ = 0, (2.12)

integrating above equation yields:

r× ṙ = L, (2.13)

where L is a constant vector. We may write equation (2.12),

⇒ r× µr̈ = 0,

⇒ r× F = 0, (2.14)

where F = µr̈ = µa (µ is reduced mass i.e. constant).

From Chapter 2, by the definition of torque and angular momentum:

τ =
dL

dt
= r× F, (2.15)

comparing equations (2.14) and (2.15), we get:

τ =
dL

dt
= r× F = 0,

dL

dt
= 0

⇒ L =constant,

i.e. angular momentum of the system is constant.

Radial and transverse components of velocity and acceleration:

If polar coordinates r and θ are taken in this plane as in Figure 2.2, the ve-

locity components along and perpendicular to the radius vector joining m to M



Preliminaries 16

are ṙ and rθ̇, then,

ṙ =
dr

dt
= ṙi + rθ̇j, (2.16)

where i and j are unit vectors along and perpendicular to the radius vector. Hence,

by equations (2.13) and (2.16),

r× (ṙi + rθ̇j) = r2θ̇k = Lk, (2.17)

where k is a unit vector perpendicular to the plane of the orbit. We may then

write

r2θ̇ = L, (2.18)

where the constant L is seen to be twice the rate of description of area by the

radius vector. This is the mathematical form of Kepler’s second law.

Figure 2.2: Radial and transverse components of velocity and acceleration

Now taking the scalar product of ṙ with equation (2.11), we get:

ṙ.
d2r

dt2
+ µ

ṙ.r

r3
= 0,

which may be integrated to give:

1

2
ṙ.ṙ− mu

r
= C,

1

2
v2 − µ

r
= C, (2.19)
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where C is a constant. This is th energy conservation form of the system. The

quantity C is not the total energy; 1
2
µ2 is related to the kinetic energy and −mu

r

to the potential energy of the system i.e. total energy is conserved.

Recall that from celestial mechanics, components of acceleration vector along and

perpendicular to the radius vector (see Figure 2.2):

a = (r̈ − rθ̇2)̂i +
1

r

d

dt
(r2θ̇)̂j,

using above equation in (2.11), we get

r̈ − rθ̇2 = − µ
r2
, (2.20)

1

r

d

dt
(r2θ̇) = 0. (2.21)

Integrating equation (2.21) gives the angular momentum integral:

r2θ̇ = L, (2.22)

making the usual substitution of

u =
1

r
, (2.23)

and eliminating the time between equation (2.20) and (2.22), implies:

d2u

dθ2
+ u =

µ

L2
. (2.24)

The general solution of above equation is :

u =
µ

L2
+ A cos(θ − θ0), (2.25)

where A and θ0 are two constants of integration. Substitute u = 1
r

in above

equation:

1

r
=

µ

L2
+ A cos(θ − θ0)
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⇒ r =

L2

µ

1 + L2A
µ

cos(θ − θ0)
,

is the polar form of the equation of the conic and may be written as:

r =
p

1 + e cos(θ − θ0)
,

where

p =
L2

µ
,

e =
AL2

µ
.

Eccentricity e classifies the trajectory of one celestial body around another. Thus:

(i) If 0 < e < 1 then the orbit is elliptical,

(ii) If e = 1 then the orbit is a parabolic,

(iii) If e > 1 then the orbit is a hyperbolic.

Hence the solution of the two-body problem is a conic, includes Kepler’s first law

as a special case.”

2.5 The Equations of Motion in the n-Body Prob-

lem

The 2BP deals much of the important work in astrodynamics, but sometimes we

need to model the real world by including other bodies. The next logical step,

then, is to drive formulas for 3BP. A further generalization of three body problem

is n-body problem. In general, solving general differential equations of motions in

n-body problem requires a fixed number of integration constants. Consider a sim-

ple gravity problem in which we have constant acceleration over time, a(t) = a0.

If we integrate this equation, we obtain the velocity, v(t) = a0t + v0. Integrating

once more provides, r(t) = r0 + v0t + 1
2
a0t

2. To complete the solution, we must

know the initial conditions. This example is a straight froward analytical solution
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using the initial values, or a function of the time and constants of integration,

called integrals of the motion. Unfortunately, this isn’t always the simple case.

When initial conditions alone don’t provide a solution, integrals of the motion

can reduce the order of differential equations, also called the degrees of freedom

of the dynamical system. Ideally, if the number of integrals equals the order of

differential equations, we can reduce it to order zero. These integrals are constant

functions of the initial conditions, as well as the position and velocity of at any

time, hence the term constants of the motion.

For the n-body problem, a system of 3n second order differential equations, we

need 6n integrals of motion for a complete solution. Conservation of linear mo-

mentum provides six, conservation of energy one, and conservation of total angular

momentum three, for a total of ten. There are no laws analogous to Kepler’s first

two laws to obtain additional constants, thus we are left with a system of order

6n− 10 for n ≥ 3.

These equations for n bodies, n ≥ 3, defy all attempts at closed-form solutions.

H. Brun, in 1887, showed that there were no other algebraic integrals. Although

Poincaré later generalized Brun’s work, we still have only the ten known integrals.

They give us insight into the motions within the three body and n-body problems.

Conservation of total linear momentum assumes no external forces are on the sys-

tem.

First, here we set up the equations of motions of n massive particles of masses

mi(i = 1, 2...n) whose radius vectors from an unaccelerated point O are ri while

their mutual radius vectors are given by rij where

rij = rj − ri (2.26)

From Newton’s laws of motion and the law of gravitation,

mir̈i = G
n∑
j=1

mimj

r3ij
rij, (j 6= i, i = 1, 2, ...n) (2.27)

here we note that rij implies that the vector between mi and mj is directed for mi

to mj, thus

rij = −rji (2.28)
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The set of equations (2.27) are the required equation of motion for n-body problem,

G being the constant of gravitation.



Chapter 3

On the Planar Central

Configurations of Rhomboidal

and Triangular Four- and

Five-Body Problems

3.1 Introduction

In this review [21] research work, we set up a 5BP having 2 bodies are symmetri-

cally put on each side of the axis of symmetry. Other 3 collinear different objects

on axis of symmetry. We discussed 2 main cases. First, 4 of our objects effectively

making a rhombus and the 5th one is placed on axis of symmetry (See Figure 3.1

and 3.2). In second case, all five objects will make an equilateral triangle, with one

of the object moved up symmetrically. Since it is a special set up, we study con-

figuration for four bodies as well having a zero mass object in center. We obtain

the region of possible CCs for four- and five-body analytically and numerically.

21
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3.2 Problem Formulation

Suppose that n − 1 point masses (m0,m1, ...,mn−1), mi > 0, i = 0, 1, 2, ...n − 1,

ri, i = 0, 1, 2, ...n − 1 are the position vectors of n − 1 masses, and the distance

between any two masses are rij, i, j = 0, 1, 2, ...n− 1.

By using the symbols of [24], it is obvious that this system will makes a planar

CC (non-collinear) if the following equation holds:

Figure 3.1: Rhomboidal five-body configurations

Figure 3.2: Triangular five-body configurations

fij =
n−1∑

k=0,k 6=i,j

mk(Rik −Rjk)∆ijk = 0, (3.1)

where Rij = 1
r3ij

and ∆ijk = (ri−rj)∧(ri−rk). The ∆ijk shows area of the triangle

obtained by (ri − rj) and (ri − rk). For n = 5, from equation (3.1) we will get the
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non-collinear general 5BP with 10 CC equations given below.

f01 = m2(R02 −R12)∆012 +m3(R03 −R13)∆013 +m4(R04 −R14)∆014, (3.2)

f02 = m1(R01 −R21)∆021 +m3(R03 −R23)∆023 +m4(R04 −R24∆024), (3.3)

f03 = m1(R01 −R31)∆031 +m2(R02 −R32)∆032 +m4(R04 −R34)∆034, (3.4)

f04 = m1(R01 −R41)∆041 +m2(R02 −R42)∆042 +m3(R03 −R43)∆043, (3.5)

f12 = m0(R10 −R20)∆120 +m3(R13 −R23)∆123 +m4(R14 −R24)∆124, (3.6)

f13 = m0(R10 −R30)∆130 +m2(R12 −R32)∆132 +m4(R14 −R34)∆134, (3.7)

f14 = m0(R10 −R40)∆140 +m2(R12 −R42)∆142 +m3(R13 −R43)∆143, (3.8)

f23 = m0(R20 −R30)∆230 +m1(R21 −R31)∆231 +m4(R24 −R34)∆234, (3.9)

f24 = m0(R20 −R40)∆240 +m1(R21 −R41)∆241 +m3(R23 −R43)∆243, (3.10)

f34 = m0(R30 −R40)∆340 +m1(R31 −R41)∆341 +m2(R32 −R42)∆342. (3.11)

Lemma 3.2.1

The Dziobek equations [25–27] for a 5BP with the following position vectors

r0 = (0, w), r1 = (−1, 0), r2 = (0, s), r3 = (1, 0), r4 = (0,−t) (Figures 3.1 and

3.2), where s, t, w belongs to the set of real numbers are:

f01 = m1(R03 −R13)∆013 +m2(R02 −R12)∆012 +m4(R04 −R14)∆014 = 0, (3.12)

f12 = m0(R10 −R20)∆120 +m1(R13 −R23)∆123 +m4(R14 −R24)∆124 = 0, (3.13)

f14 = m0(R10 −R40)∆140 +m1(R13 −R43)∆143 +m2(R12 −R42)∆142 = 0. (3.14)

Proof

From the expression of Rij, ∆ijk and ri (i = 0, 1, 2, 3, 4) we get

R01 = R03 =
1

(1 + w2)
3
2

,
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R02 =
1

| s− w |3
,

R13 =
1

8
,

R12 = R23 =
1

(1 + s2)
3
2

, (3.15)

R24 =
1

(s+ t)3
,

R14 = R34 =
1

(1 + t2)
3
2

,

R04 =
1

| w + t |3
.

By using the following symmetries we find ∆ijk, where i, j, k = 1, 2, ..., 5,

∆ijk = −∆jik = −∆ikj = −∆kji,

∆ijk = ∆jki = ∆kij,

∆ijk = 0, if i = j or i = k or j = k,

and

∆043 = ∆014 = t+ w,

∆013 = 2w, ∆132 = 2s,

∆324 = ∆142 = t+ s, (3.16)

∆143 = 2t, ∆024 = 0.

Substituting m1 = m3 in Equations (3.2)-(3.11), and applying the corresponding

relations from (3.15) and (3.16) we see that f01 and f03 are identical (Equations

(3.2) and (3.4)). In the same way f12 is identical to f23 (Equations (3.6) and (3.9)),

and f14 is identical to f34 (Equation (3.8) and (3.11)). When we put R10 = R30,

R12 = R32 and R14 = R34. This implies that f13 = 0. Similarly if we substitute

∆024 = ∆042 = ∆240 = 0 in Equation (3.3), (3.5) and (3.10) gives

f02 = ((R01 −R21)∆021 + (R03 −R23)∆023)m1, (3.17)
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f04 = ((R01 −R41)∆041 + (R03 −R43)∆043)m1, (3.18)

f24 = ((R21 −R41)∆241 + (R23 −R43)∆243)m1. (3.19)

Using equation (3.15) and (3.16) in (3.17) - (3.20) we get f02 = f04 = f24 = 0. We

have shown that f01 = f03, f12 = f23, f14 = f34, f02 = f04 = f24 = f13 = 0.

consequently, f01, f12 and f14 are only three essential equations for the general

5BP (according to (3.12) - (3.14)). Hence the proof.

Theorem 3.2.2

Suppose that 2 pairs of same objects (masses) on vertices of rhomboidal shape and

a 5th object is on axis of symmetry. All masses having r0 = (0, w), r1 = (−1, 0),

r2 = (0, t), r3 = (1, 0), r4 = (0,−t) are position vectors. where t is a positive real

number and w ∈ R− {0}. Then no CC exists.

Proof

First of all we will substitute m2 = m4 in Lemma 1’s Dziobek equations and then

write in the following form:


0 B0 C0

A1 B1 C1

A2 −B1 −C1



m0

m1

m2

 =


0

0

0

 ,

where

B0 = (R03 −R13)∆013,

B1 = (R13 −R23)∆123,

A1 = (R10 −R20)∆120,

A2 = (R10 −R40)∆140,

C1 = (R14 −R24)∆124,

C0 = (R02 −R12)∆012 + (R04 −R14)∆014.
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For the non-trivial solution of the above system of equations, the augmented

matrix’s determinant have to be zero. Summing up the 2nd row of the aug-

mented matrix with the 3rd row, the row 3 reduce to {A1 + A2, 0, 0}. Therefore,

fA1A2 = A1 + A2 = 0 This yields the presence of the solution which is non-trivial

(In last section we will discuss the case for m0 = 0 in detail). After simplification,

the remaining two equations are:

µ0 =
m0

m2

=
B0C1 −B1C0

B0A2

and µ1 =
m1

m2

= −C0

B0

. (3.20)

Hence they will form a CC w.r.t the geometric constraint

fA1A2 = (R01 −R02)∆012 + (R01 −R04)∆014

=
2w

(w + 1)
3
2

+
t− w
|t− w|3

− t+ w

|t+ w|3
= 0. (3.21)

Requirements for positive solution are:

fA1A2 = 0, µ0 > 0, µ1 > 0.

We have the following three cases:

(a) If t is greater than the absolute of w, w ∈ R\{0}, then the above equation

will be a polynomial in w and t such that t 6= ±w.

G1(w) = 2t4w − 4t2w3 + 4tw(w2 + 1)
3
2 + 2w5 = 0. (3.22)

The polynomial G1(w) has two complex roots and two real negative roots,

which is not of our interest as we need t > 0.

(b) If t is less than w and w greater than zero, then fA1A2 = 0 will be a polyno-

mial in w and t 3 t 6= ±w 6= 0.

G2(w) = t4w − t2(2w3 + (1 + w2)
3
2 ) + w2(w3 − (1 + w2)

3
2 ) = 0. (3.23)
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Since the above polynomial G2(w) is quadratic in t2. G2(w) has the four

roots given below.

t(w) = ±

√√√√(w2 + 1)
3
2

2w
+ w2 ±

√
(w2 + 1)

3
2 + 8w3(w2 + 1)

3
2

2w
.

The function below

f1(w) =
(w2 + 1)

3
2

2w
+ w2 −

√
(w2 + 1)3 + 8w3(w2 + 1)

3
2

2w

is negative ∀ values of w (See Figure 3.3(a)).

Similarly

f2(w) =
(w2 + 1)

3
2

2w
+ w2 +

√
(w2 + 1)3 + 8w3(w2 + 1)

3
2

2w

is positive for w > 0 (See Figure 3.3(b)). Now G2(w) has one negative and

one positive root. Only the positive roots are interesting.

So finally we conclude that for presence of CCs, the necessary condition is

satisfied at

t1(w) =
√
f2(w).

If we look at Figure 3.4, it is quite clear that µ0(w) > 0 when w is less than
√

3. Similarly µ1(w) is greater than 0 when w is greater than
√

3. Hence

there is no region where both µ0, µ1 are positive (Figure 3.5).

(c) If t is less than the absolute of w and w is less than zero, then fA1A2 = 0 will

be a polynomial in w and t such that t 6= ±w 6= 0.

G3(w) = t4w + t2((w2 + 1)
3
2 − 2w3) + w2(w3 + (w2 + 1)

3
2 ) = 0. (3.24)

The above polynomial G3(w) is quadratic in t2 and has four real and different

roots as a functions of w which are given below:
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t2(w) = −
√
f3(w), t3(w) =

√
f3(w),

t4(w) = −
√
f4(w), t5(w) =

√
f4(w),

where

-2 -1 1 2
w
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f1(w)

(a)
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15

20
f2(w)

(b)

Figure 3.3: (a) f1(w), (b) f2(w)
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Figure 3.4: (a) µ0(w) whenever t = t1(w), (b) µ1(w) whenever t = t1(w)

f3(w) = −(w2 + 1)
3
2

2w
+ w2 −

√
(w2 + 1)

3
2 (1− 8w3)

2w
,

f4(w) = −(w2 + 1)
3
2

2w
+ w2 =

√
(w2 + 1)

3
2 (1− 8w3)

2w
.
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As we see in Figure 3.6, that t3(w) and t5(w) are positive roots, and the

remaining two roots are negative.

It is clear from Figure 3.6 that t3(w) > |w| ∀w < 0. For this special case we

have an extra constraint of t < |w|, so this root is completely invalid. Here

the positive root t5(w) will be less than the absolute of w for w < 0 when it

is defined in these intervals (−4,−1.8) and (−0.4, 0).

When w ∈ (−0.2, 0), the mass ratio µ1 will be positive as B0 and C0 have

opposite signs in that interval; see Figure 3.7(a). A2B0 and B0C1 − B1C0

have opposite signs in the same interval so µ0 is not positive, no CCs at

t = t5(w) when w ∈ (−0.4, 0).

For w < −1.8, C0 is function of w (increasing) with the absolute minimum

0, occurring when w →∞. So C0 > 0 ∀w < −1.8. Similarly, B0 is positive

as well. Hence µ1 < 0 for w < −1.8 (see Figure 3.7(b)). Hence the proof.
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Figure 3.5: (a) µ0(w) whenever t = −t1(w), (b) µ1(w) whenever t = −t1(w)
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Figure 3.6: Roots of G3(w)
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Figure 3.7: The curves B0, C0, A2B0 and B0C1 − B1C0 at t = t5(w) 3 (a)
w ∈ (−0.4, 0), (b) w ∈ (−4,−1.8)

Theorem 3.2.3

Let r1 = (−1, 0), r2 = (0, s), r3 = (1, 0), r4 = (0,−t), t, s ∈ R2. Then the central

configurations r = (r1, r2, r3, r4) make a CCs in the following region

Rµ2µ4(s, t) = {(s, t)|(0.268 < t ≤ 0.577 ∧ 1− t2

2t
< s <

√
3)

∨ (0.577 < t <
√

3 ∧
√
t2 + 1− t < s <

√
3)}.

(3.25)

Proof

After putting m0 equal to zero in Lemma 3.2.1, the system of Dziobek equations

gets the form:

(R13 −R23)∆123m1 + (R14 −R24)∆124m4 = 0,

(R13 −R14)∆134m1 + (R12 −R24)∆124m2 = 0, (3.26)

where

R23 = (1 + s2)−
3
2 , R14 = (12

t )
− 3

2 , R24 = (t+ s)−3,

∆124 = −(s+ t), ∆134 = −2t, ∆123 = −2s.

Now we will define µ2 = m2

m1
and µ4 = m4

m1
, as the above system is under

determined. After solving equation (3.26) we get:
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µ2 =
f5(t)(s

2 + 1)
3
2 t(s+ t)2

4(t2 + 1)
3
2f6(s, t)

, (3.27)

µ4 =
sf7(s)(t

2 + 1)
3
2 (s+ t)2

4(s2 + 1)
3
2f8(s, t)

, (3.28)

where

f5(t) =
(

(t2 + 1)
3
2 − 8

)
, f6(s, t) =

(
(s2 + 1)

3
2 − (s+ t)3

)
,

f7(s) =
(

(s2 + 1)
3
2 − 8

)
, f8(s, t) =

(
(t2 + 1)

3
2 − (s+ t)3

)
.

To obtain CC regions, in which all masses are positive, we are going to find regions

in st-plane, in which the mass ratios in both cases are positive. Since we know that

f5(t) is monotonically increasing function of the variable t, ∀ t > 0, with only one

zero at t =
√

3, so it is quite simple to look at f5(t), which is less than zero when

t is less than
√

3. Solving f6(s, t) = 0 for t, it will gives us t(s) = −s +
√
s2 + 1.

It is quite simple to investigate that f6(s, t) < 0 when t(s) > −s+
√
s2 + 1. f5(t)

and f6(s, t) can’t be positive simultaneously, therefore µ2 > 0 in

Rµ2 =
{

(s, t)|t > 0 ∧ s > 0 ∧
√
s2 + 1− s < t <

√
3
}
. (3.29)

When s =
√

3, f7(s) = 0, and f8(s, t) = 0, when

s(t) = −t+
√
t2 + 1. Hence, µ4 > 0 in

Rµ4 =
{

(s, t)|s > 0 ∧ t > 0 ∧
√
t2 + 1− t < s <

√
3
}
. (3.30)

The intersection of the above two equations is Rµ2µ4 which is given by Equation

(3.25) (see Figure 3.8).

Corollary 3.2.4

Let us suppose that t is less than zero in the arrangement of Theorem 3.2.3,

assuring a four-body triangular configuration, then (m1,m2,m3,m4) will make a
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Figure 3.8: CC region for rhomboidal 4BP

triangular CC in the region given below.

TRt−(s, t) = (s, t)|(−3.73 < t < −
√

3 ∧ h1(t) < s <
√

3) ∨ (−
√

3 < t ≤ −1

∧ (0 < s < h1(t) ∨
√

3 < s < h2(t))) ∨ (−1 < t < − 1√
3

∧
√

3 < s < h2(t)) ∨ (− 1√
3
< t < 0 ∧ h2(t) < s <

√
3), (3.31)

where

h1(t) =
1− t2

2t
, h2(t) =

√
t2 + t− t. (3.32)

Proof

One follows the same process as in Theorem 3.2.3, for the proof of this Corollary.

That’s why we give only an outline and left the detail for the readers who are

interested.

Utilizing the like process as we did in Theorem 3.2.3, we can easily show that
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m2 ≥ 0 in the following region:

TRm2(s, t) = {(s, t)|(0 < s <
1√
3
∧ (−

√
3 < t < H(s) ∨ −s < t < 0))

∨ (
1√
3
< s <

√
3 ∧ (H(s) < t < −

√
3 ∨ −s < t < 0))

∨ (s >
√

3 ∧ (H(s) < t < −s ∨ −
√

3 < t < 0))}, (3.33)

where

H(s) = −
√
s2 + 1− s. (3.34)

Similarly, m4 ≥ 0 in the region given below

TRm4(s, t) = (t < −
√

3 ∧ (0 < s <
√

3 ∨ −t < s < h2(t)))

∨
(
−
√

3 < t < − 1√
3
∧ (0 < s < −t ∨

√
3 < s < h2(t))

)
∨
(
− 1√

3
< t < 0 ∧ (0 < s < −t ∨ h2(t) < s <

√
3)

)
. (3.35)

The intersection of TRm4(s, t) and TRm2 give TRt−(s, t).

Theorem 3.2.5

Let r0 = (0, w), r1 = (−1, 0), r2 = (0, s), r3 = (1, 0), r4 = (0,−t), in

which w, t, s ∈ R.

(a) The arrangement r = (r0, r1, r2, r3, r4) will make a CC with

µ0 =
m0

m1

=
A1C2C3 − (B1B3C2 +B2C1C3)

A2C1C3 + A3B1C2

,

µ2 =
m2

m1

=
A3B2C1 − (A1A3C2 + A2B3C1)

A2C1C3 + A3B1C2

, (3.36)

µ4 =
m4

m1

=
A2B1B3 − (A1A2C3 + A3B1B2)

A2C1C3 + A3B1C2

,

where

A1 = (R03 −R13)∆013, A2 = (R10 −R20)∆120, A3 = (R10 −R40)∆140,

B1 = (R02 −R12)∆012, B2 = (R13 −R23)∆123, B3 = (R13 −R43)∆143,

C1 = (R04 −R14)∆014, C2 = (R14 −R24)∆124, C3 = (R12 −R42)∆142.
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(b) The masses ratios µ0 > 0, µ2 > 0 and µ4 > 0 form a CCs in

R(t, w) = Rµ0 ∩Rµ2 ∩Rµ4 , (3.37)

Where equation (3.40), (3.45) and (3.47) are respectively, shows usRµ0 , Rµ2 and Rµ4 .

Proof of Theorem 3.2.5(a)

In Lemma 3.2.1, equation (3.12) - (3.14) describe the CCs of triangular or rhom-

boidal 5BPs. Let µ0 = m0

m1
, µ2 = m2

m1
, µ4 = m4

m1
and rewrite Lemma 3.2.1’s equations

as:

A1m1 +B1m2 + C1m4 = 0,

A2m0 +B2m1 + C3m2 = 0,

A3m0 +B3m1 + C3m2 = 0,

where

A1 = (R03 −R13)∆013, A2 = (R10 −R20)∆120, A3 = (R10 −R40)∆140,

B1 = (R02 −R12)∆012, B2 = (R13 −R23)∆123, B3 = (R13 −R43)∆143,

C1 = (R04 −R14)∆014, C2 = (R14 −R24)∆124, C3 = (R12 −R42)∆142.

After dividing the above three equations by m1, then write in matrix form, this

will gets the form: 
0 B1 C1

A2 0 C2

A3 C3 0



µ0

µ2

µ4

 = −


A1

B2

B3

 . (3.38)

After doing a number of row operations, we get the following simultaneous solution:

µ0 =
A1C2C3 − (B1B3C2 +B2C1C3)

A2C1C3 + A3B1C2

,

µ2 =
A3B2C1 − (A1A3C2 + A2B3C1)

A2C1C3 + A3B1C2

, (3.39)

µ4 =
A2B1B3 − (A1A2C3 + A3B1B2)

A2C1C3 + A3B1C2

.
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Hence the proof.

Proof of Theorem 3.2.5(b)

By substituting s = 1 in Lemma 3.2.1, we can generate the values of Rij and ∆ijk.

Lemma 3.2.6

The function

µ0 =
A1C2C3 − (B1B3C2 +B2C1C3)

A2C1C3 + A3B1C2

attains a positive value in the region

Rµ0 = (RD ∩RNµ0
) ∪ (Rc

D ∩Rc
Nµ0

), (3.40)

Where Rc
Nµ0

and Rc
D represent the complements of the regions RNµ0

and RD.

Proof

Let Nµ0 = A1C2C3 − (B1B3C2 + B2C1C3) and D = A2C1C3 + A3B1C2. For the

positive value of µ0, D and Nµ0 must have the same signs. The denominator, in

following two cases should be positive:

(i) When both the factors A2C1C3 and A3B1C2 are positive.

(ii) At least one of the factors is not negative, 3 the positive portion is greater

than the absolute of negative portion.

In the following region, both of the factors will be positive

Rda(t, w) = (t, w)|(0 < w ≤ 0.41 ∧ d1(w) < t < 1) ∨ (0.41 < w < 0.58

∧ d1 < t < 0.5 · d2(w)) ∨ (w > 2.41 ∧ 0.41 < t < 1), (3.41)

where

d1(w) =
√
w2 + 1− w, d2(w) =

(1− w2)

w
. (3.42)

Similarly, when
1. A2C1C3 > 0 and A3B1C2 < 0 then A2C1C3 > |A3B1C2| in the region given

below.
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Rdb(t, w) = {(t, w)| (0.4 < t ≤ 0.58 ∧ 0.6 · d2(t) < w < 1) ∨ (0.58 < t < 1 ∧ d1(t) < w < 1)} .

2. A2C1C3 < 0 and A3B1C2 > 0 then A3B1C2 > |A2C1C3| in the regions given

below

Rdc(t, w) = {(t, w)|(w ≤ −1.49 ∧ 0 < t < 0.23) ∨ (−1.49 < w < −1

∧ 0 < t < 0.2 · d2(w)) ∨ (1 < w < 2.41 ∧ 0.41 < t ≤ 1)}.

Thus, the denominator (D) ≥ 0 in the following region (Figure 3.9(a)):

RD = Rda(t, w) ∪Rdb(t, w) ∪Rdc(t, w). (3.43)

Similarly the nominator Nµ0 is positive in the region given below (Figure 3.9(b)):

RNµ0
= RcNµ0

(t, w) ∪RdNµ0
(t, w). (3.44)

Hence, in the intersection of RD and RNµ0
, µ0 > 0, and the intersection of

their complements. Region Rµ0 is represented in Figure 3.9(c). Hence the proof.

Lemma 3.2.7

The function

µ2 =
A3B2C1 − (A1A3C2 + A2B3C1)

A2C1C3 + A3B1C2

obtain positive values in following region

Rµ2 = (RD ∩RNµ2
) ∪ (Rc

D ∩Rc
Nµ2

), (3.45)

where the complements of the regions RNµ2
and RD are Rc

Nµ2
and RD, respectively.

Proof

Let Nµ2 = A3B2C1− (A1A3C2 +A2B3C1). For the positive value of µ2, numerator
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Figure 3.9: Regions (a) RD, (b) RNµ0 , (c) Rµ0

Nµ and denominator D must have the same sign. We already discuss D in detail

in Lemma 3.2.6. Now we will find the region where Nµ2 is positive.We can easily

prove that Nµ2(t, w) > 0 in
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RNµ2
= RaNµ2

(t, w) ∪RbNµ2
(t, w) ∪RcNµ2

(t, w). (3.46)

In Figure 3.10(a), we have shown the region RNµ2
. Consequently, µ2 > 0 in the

intersection of RNµ2
and D, as well as the complement’s intersection. Similarly

the region Rµ2 is displayed in Figure 3.10(b). Hence the proof.
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Figure 3.10: Regions (a) RNµ2 (colored) , (b) Rµ2 (colored)

Lemma 3.2.8

The function

µ4 =
A2B1B3 − (A3B1B2 + A1A2C3)

A2C1C3 + A3B1C2

gets the positive values in the following region

Rµ4 = (RD ∩RNµ4
) ∪ (Rc

D ∩Rc
Nµ4

). (3.47)

Proof

Let Nµ4 = A2B1B3− (A3B1B2 +A1A2C3). For the positive values of µ4, the signs

of the numerator Nµ4 and denominator (D) must be same. In Lemma 3.2.6, we

have already given a detail analysis of the denominator of µ4. Now we will find
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Figure 3.11: Regions (a) RNµ4 (colored), (b) Rµ4 (colored)
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Figure 3.12: CC Region (R(t, w)) for the rhomboidal 5BP

the region where Nµ4 ≥ 0. It can be easily prove that Nµ4(t, w) is positive in (see
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Figure 3.11(a)):

RNµ4
= RaNµ4

(t, w) ∪RbNµ4
(t, w) ∪RcNµ4

(t, w). (3.48)

Thus µ4 is greater than zero in the intersection of RNµ4
and RD as shown in Figure

3.11(b). which is the complete proof.

For all positive masses the region of CC is obtained by:

R(t, w) = Rµ0 ∩Rµ2 ∩Rµ4 . (3.49)

In Figure 3.12, we showed the region R(t, w). This is the complete proof of The-

orem 4b. For better understanding the behavior of the complex central configu-

ration regions in Figure 3.12, some of the related examples are shown in Figures

3.13 and 3.14.

In Lemma 3.2.1, he supposed variables s = 1 and t ∈ (−1, 0) will give a five-body

triangular configurations (Figure 3.2).

Corollary 3.2.9

In the setup of Theorem 3.2.4, let us suppose that t ∈ (−1, 0), assure a triangular

5-body settlement for w greater than zero. The configuration (m0,m1,m2,m1,m4)

will make a CC in the region given below:

Rt−(t, w) = Rm0(t, w) ∩Rm2(t, w) ∩Rm4(t, w). (3.50)

Proof

Let us suppose that t < 0 and solve Equation 3.41 as we did in Theorem 3.2.4

to get the following region of CCs given in Figure 3.2 (isosceles triangular 5BP).

We are giving an outline of the proof and left the detail for the readers who are

interested. When w > 0, the denominator will always be negative. That’s why,

µ0, µ2 and µ4 will be greater or equal to zero if the corresponding numerators (N)

negative. So, the regions of CC where µ0, µ2 and µ4 are respectively positive are:
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m0(0, 0.3) = 0.66

m1(-1, 0) = 1

m2(0, 1) = 0.54

m3(1, 0) = 1

m4(0, -0.93) = 2.85
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Figure 3.13: Examples of rhombus type five-body central configurations when
w is positive

Rm0 = (−1 < t < −w ∧ 0 < w < 1) ∨ (1 < w < 1.73 ∧ (−1 < t < d2(w)

∨ 0.5

w
− 0.5w < t < 0)) ∨ 1.5 < w < p,

Rm2 = (0 < w < 1 ∧ (−1 < t < −w ∨ −w < t < 0)) ∨ (−1 < t < d2(w)

∧ 1.73205 < w < 2.41421) ∨ t > d2(w),
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m1(-1, 0) = 1

m0(0, -1.45) = 0.76

m2(0, 1) = 0.27

m3(1, 0) = 1

m4(0, -0.4) = 0.4
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m1(-1, 0) = 1
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m2(0, 1) = 1.38
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Figure 3.14: Examples of rhomboidal 5-body central
configurations when w is less than zero.

Rm4 = (0 < w < 1 ∧ −w < t < 0) ∨ (1 < w < 1.73205

∧ −1 < t < 0) ∨ (1.73 < w < q) ∨ (1.6 < w < r),
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Figure 3.15: CC regions for triangular 5BP
(a) m0 > 0, Rm0(w, t), (b) m2 > 0, Rm2(t, w), (c) m4 > 0, Rm4(t,w),

(d) mi > 0, i = 0, 2, 4, Rt−(w, t)

where

p(t) = 84.13t5 + 301.01t4 + 424.28t3 + 295.98t2 + 103.56t+ 16.68,

q(t) = −3.91t3 − 7.57t2 − 4.22t+ 1.22,

r(t) = 305.66t3 + 52t2 + 0.25t+ 1.76.

For triangular 5BP, the CC region is
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Figure 3.16: Examples of triangular 5-body CCs.

Rt−(w, t) = Rm0(w, t) ∩Rm2(w, t) ∩Rm4(w, t). (3.51)

The above region is shown in Figure 3.15(d) alongside Rm0 (Figure 3.15(a)), Rm2

(Figure 3.15(b)) and Rm4 (Figure 3.15(c)). The CC region in

Figure 3.15 corresponds to the solutions (triangular) of 5BP. Now by picking up

s =
√

3, the CC in Figure 3.2 will become a triangle (equilateral). For this triangle,

the CC can be found in the like way as we did in Corollary 3.2.9 or Theorem 3.2.4.

To see the actual location of the objects in case of triangular 5-body CCs, have a
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look at Figure 3.16. It is not possible analytically to find the central configuration

regions in fully general cases (not fixing s = 1). Still, we obtained most of the

solution in the current analysis.



Chapter 4

Conclusions

We studied the CC of different types of symmetric triangular and rhomboidal

5BP. Different cases related to the problem were discussed and it was shown the

existence and non existence of CC related to each case. We formed expressions

for mass ratios and derived regions of CC for positive masses in each case. The

existence of continuous family of CCs is shown to exist for triangle and rhombus

of various sizes.

We reached at a conclusion that no CCs exists when one mass is put anywhere

except the origin on the axis of symmetry of a rhombus, and 2 pairs of objects are

put on vertices (symmetric about the axes). Regions of CCs are obtained for all

other cases, comprise of equilateral and isosceles triangular 5BPs and rhomboidal

4- and 5BPs, using analytical techniques. For the completion of analytical results,

we numerically explored these regions.
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